Computer aided drug designing of imidazole free acyl piperazine derivative as a histamine H₃ receptor antagonist

Khalida Bano*, Sadaf Naeem, Naveed Ali Siddiqui, Naila Minhas and Naheed Akhtar *Biophysics research unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan

Abstract: Computer aided drug designing of 1- alkyl4-acyl piperazine derivative was performed by Argus Lab software. The minimum potential energy is calculated by geometry convergence function by Argus lab software. The most feasible position for the drug to interact with the receptor was found to be 51.19358580 kcal/mol.

Keywords: Imidazole, drug designing, acyl piperazine derivatives, histamine H₃ receptor. Received: February 12, 2012 Accepted: May 10, 2012 *Author for Correspondence: khalidabano @hotmail.com

INTRODUCTION

The H₃ receptor is localized primarily to the central nervous system (CNS), with highest expression, in rodents, in the cerebral cortex, formations. hippocampus striatum. and hypothalamus. Centrally administered histamine H₃ antagonists lead to increased central histamine levels and may therefore be useful for the treatment of a variety of CNS disorders, such as attention deficit and hyperactivity disorders, cognitive disorders, schizophrenia or obesity^{1.4}. In search for non-imidazole histamine H_3 receptor antagonists, currently indicated as a promising class of H₃ blockers, a series of simple alkyl piperazine derivatives has been studied to attain a preliminary pharmacological profile. The compounds were characterized in vitro in terms of binding affinity, antagonistic potency and selectivity at rodent H₃ receptors. Amides with two atoms between carboxyl and aryl group showed lower potency at the human H₃ receptor than those amides with a three atom spacer⁵⁻⁹.

The histamine H_3 receptor subtype negatively modulates the release of various neurotransmitters such as histamine, glutamate, nor epinephrine, acetylcholine and many others mainly in the CNS and H₃ antagonists have been developed to treat central diseases characterized by neurotransmission disturbance such as schizophrenia, memory/learning and sleep disorders. In search for non-imidazole histamine H₃ receptor antagonists, currently indicated as a promising class of H₃ blockers, a series of simple alkyl piperazine derivatives has been studied to attain a preliminary pharmacological profile¹⁰. The compounds were characterized in vitro in terms of binding affinity, antagonistic potency and selectivity at rodent H3 receptors¹¹ Non-imidazole H₃ antagonists such as A-304121, A-317920, A-

 $349821^{12,13}$ as well as ABT-239 and several analogs, also work in this model of ADHD¹⁴.

Imidazole-containing compounds have been reported to have less efficient CNS penetration and may thus fail ultimately to reach their target. Because of such well recognized challenges, almost all recent research directed toward development of H_3 antagonist ligands has been directed toward the so-called "non-imidazoles"¹⁵.

The field of non-imidazole H₃ antagonist ligands is today characterized by an extremely broad diversity of structural classes, with structural diversity increasing over time, rather than toward converging any common group of pharmacophores. This trend reflects the ingenuity of investigators and the large number of teams working toward finding H₃ antagonists, but may also indicate an inherent ability of the receptor to accommodate a wide variety of pharmacophores. The initial disclosures and explorations of non-imidazole H₃ antagonists were from a variety of institutions. Isopropylpiperid inyl benzothia zoles were reported as early non-imidazole H3 antagonists¹⁶. Non alkylated piperazine or 1-alky; piperazine with aryl-, or hydroxyl-, or alkoxy - substituted alkyl groups gave inactive or significantly less potent amides¹⁷.

The highly localized CNS distribution of the H_3 receptor¹⁸ suggests that limited peripheral sideeffects will be seen after treatment with an H_3 receptor antagonist. Furthermore, peripheral histamine-mediated tone is normally minimal, and the H_3 receptor thus is mainly quiescent under normal physiological conditions. Indeed, no cardiovascular¹⁹ or neuroendocrine effects²⁰ have been reported after treatment with H_3 receptor antagonists.

MATERIALS AND METHODS

The three dimensional quantitative structure activity relationship (3D QSAR) describe the biological activity of molecule with pharmacological potential as a function of their structural properties^{21,22}. Computational advances have generated many tools which are widely used to construct models, minimization and representation of molecular structure^{23,24}. All conformational optimization) study analysis (geometry was performed on window based computer using Argus ACD Lab chem. Sketch softwares. and ACDS/CHEMSKETCH is an integrated software package from advanced chemistry development for drawing chemical structures, reactions and to plot best projection with minimum energy. The chemical structure of 1-Alkyl-4-Acylpiperazine was refined by X-ray crystallography technique.

The 1-alkyl-4-acylpierazine derivative molecule is utilized to determine the 3D structure of molecule .several computer programs are used infer the shape of molecule fro m geometry optimization calculations. The 1-Alkyl-4-Acylpieperazine derivative structure is generated by argues Lab, and minimization was performed with the semi-empirical Austin model 1(AMI) parameter, Argus is an electronic structure program that is based on the quantum mechanics it predicts the potential energies geometry .molecular structure, optimization of structure, vibration frequencies of coordinates of atoms, bond angle, bond length, and reaction pathways. The set of energy function and the corresponding parameters are called as force field.

The molecular mechanics method calculates the energy as the function of the coordinates and energy minimization is an integral part of the method. Confirmation search method random numbers are used to determine how many and which torsion angle to be incremented and how much (torsion space) or how much and in which direction x, y, z, coordinates of each atom are to be translated. The minimum potential energy is calculated by using geometry convergence function in Argus Lab soft ware In Order to determine the allowed confirmation the contact distance between the atoms in adjacent residues is examined using criteria for minimum Vander waal contact distance²⁷. Surfaces created to visualize ground state properties such as orbital, electron densities, electrostatic potentials (ESP) spin densities and generated grid data used to make molecular orbital surfaces and visualized the molecular orbital and making an electrostatic potential mapped and electron density surface.

RESULTS AND DISCUSSION

Prospective view of molecule 1-alkyl-4acylpiperazine derivative with properties is shown in figure 1. Figure 2 shows prospective view of active confirmation of 1-alkyl-4-acyl piperazine derivative. The electron density mapped of atoms by ACD LABS 3D Viewer software in figure 3. Figure 4 shows Electrostatic potential of molecule ground state mapped on to the electron density surface for the ground state.

Molecular Formula	$= C_{19}H_{27}FN_2O_2$
Formula Weight	= 334.4282832
Composition	= C(68.24%) H(8.14%) F(5.68%) N(8.38%) O(9.57%)
Molar Refractivity	$= 92.14 \pm 0.3 \text{ cm}^3$
Molar Volume	$= 301.5 \pm 3.0 \text{ cm}^3$
Parachor	$= 763.3 \pm 6.0 \text{ cm}^3$
Index of Refraction	$= 1.523 \pm 0.02$
Surface Tension	= 41.0 ± 3.0 dyne/cm
Density	= 1.108 ± 0.06 g/cm ³
Dielectric Constant	= Not available
Polarizability	= 36.52 ± 0.5 10 ⁻²⁴ cm ³
Monoisotopic Mass	= 334.205656 Da
Nominal Mass	= 334 Da
Av erage Mass	= 334.4283 Da

Figure 1: Prospective view of molecule by ACDC Chem. Sketch.

Figure 2: Prospective view of molecule by Argus lab.

Figure 3: Electron density clouds of molecule4: labeled 1-alkyl-4-acylpiperazine derivative molecule.

Figure 5 shows the complete surface with the color map. Figure 6 show the occupied molecular orbital of molecule calculated with the ZINDO method and rendered a mesh the positive and negative phases of the orbital are represented by the two colors. The blue region represents an increase in a density the red region represent a decrease in electron density. The minimum potential energy shows for drug receptor interactive via the geometry convergence map in fig 6 and labeled molecule shown in fig 7. Fractional coordinates of molecule is given in table 1 and bond length and bond angles are given in table 2 and 3 respectively. The result indicates that the Best confirmation of the molecule is present at minimum potential energy is found to be 51.19358580 kcal/mol.

N1	11.46071015	10.43446056	0.88621856	7
C2	11.47118990	11.81125161	0.31009586	6
C3	10.33063476	10.12963470	1.80492498	6
C4	10.10550248	12.49112904	0.44003102	6
C5	8.97210968	10.41383632	1.14341618	6
N6	9.04299234	11.49824062	0.12163506	7
C7	12.69550264	9.73081666	0.99202128	6
C8	13.81353370	10.11386942	0.03375701	6
C9	14.96615466	9.12045997	0.06259786	6
C10	16.02839466	9.39619253	0.98886820	6
C11	17.36869499	8.75662048	0.79103654	6
C12	19.87911076	7.61752070	0.43988722	6
C13	19.75363671	8.77099890	1.22360985	6
C14	18.76131265	7.02073370	0.16004045	6
C15	18.49288558	9.33163310	1.39382314	6
C16	17.51086557	7.59603298	0.02345054	6
F17	21.09380882	7.06975466	0.25919244	9
C18	7.73367169	12.12067685	0.27792999	6
C17	7.12639272	11.26472049	1.40779636	6
C19	6.74567719	12.32428939	0.88931565	6
C20	6.05898902	12.02714495	2.16780207	6
C21	5.90602618	13.57419740	0.71672310	6
O22	15.81375464	10.10758763	1.95388576	8
O23	12.77076312	8.81530880	1.80122208	8
H24	11.75698169	11.71239075	0.75748791	1
H25	12.25071955	12.43853018	0.79410977	1
H26	10.37637134	9.06114113	2.09935930	1
H27	10.44365407	10.71938455	2.73947426	1
H28	9.97567336	12.92773886	1.45364962	1
H29	10.02845756	13.33381110	0.27654623	1
H30	8.59063532	9.52480891	0.60606040	1
H31	8.22903305	10.64750162	1.94158789	1
H32	13.40353382	10.18604644	0.99568334	1
H33	14.17944756	11.13101198	0.28545906	1
H34	15.42978980	9.11731460	1.06911104	1
H35	14.58235953	8.09015074	0.09272600	1
H36	20.63447750	9.22073456	1.69627536	1
H37	18.87674924	6.11523734	0.76617481	1
H38	18.38346046	10.23244904	2.01390693	1
H39	16.63355927	7.12543450	0.44229126	1
H40	8.00092931	13.12144662	0.70533360	1
H41	7.92384349	10.95368896	2.11282297	1
H42	6.71173954	10.32340727	0.99551696	1
H43	6.08011396	11.44219661	0.97927957	1

H44	7.29720149	12.36991142	1.85346742	1
H45	5.61071550	11.41729185	2.96061924	1
H46	5.24376919	12.35145435	1.49986683	1
H47	6.47220350	12.93120294	2.63517206	1
H48	5.34247392	13.54708496	0.23110338	1
H49	5.17189619	13.67643579	1.52488433	1
H50	6.52109270	14.48262669	0.70820157	1

Figure 4: Shows the complete surface with the color map of ESP.

Figure 5: Electrostatic potential (ESP) mapped electron density surface (mesh).

positive

Figure 6: Visualize molecular orbital of molecule, blue shows positive and red shows negative.

CONCLUSION

In the present potential energy of non-bonded interactive for 1-alkyl-4-acyl piperazine derivative is calculated. Total potential energies were calculated by Summation of all individual pairs. The result indicates that the best confirmation of 1-alkyl-4acylpiperazine derivative is found to be at 51.19358580 kcal/mol which is minimum potential energy. At this point molecule will be more active as imidazole- free Histamine H_3 antagonist. We have identified a new class of highly potent and selective antagonists of the human Histamine H_3 receptor by interactive screening of arrays of monoacyldiamines.

1.2 (N)	(C) = 1.461025.516.053240
1 2 (N)	$\begin{array}{c} (C) & 1.461925 & 516.953249 \\ \hline (C) & 1.461925 & 516.953249 \\ \hline \end{array}$
1 3 (N)	$\begin{array}{c} (C) & 1.401923 & 510.933249 \\ \hline (C) & 1.436817 & 544 & 530508 \\ \hline \end{array}$
$1 / (\mathbf{N})$	(C) 1.430817 344.330308
2 4 (C) 2 5 (C)	(C) 1.514000 349.799987
3 5 (C)	(C) 1.514000 349.799987
4 6 (C)	(N) 1.461925 516.953249
5 6 (C)	(N) 1.461925 516.953249
6 18 (N)	(C) 1.461925 516.953249
7 8 (C)	(C) 1.489000 367.716672
7 24 (C)	(0) 1.260307 729.470867
8 9 (C)	(C) 1.514000 349.799987
9 10 (C)	(C) 1.489000 367.716672
10 11 (C)	(C) 1.461000 389.266264
10 23 (C)	(O) 1.260307 729.470867
11 15 (C)	(C) 1.458000 391.674090
11 16 (C)	(C) 1.323387 523.765496
12 13 (C)	(C) 1.458000 391.674090
12 14 (C)	(C) 1.323387 523.765496
12 17 (C)	(F) 1.439434 369.346633
13 15 (C)	(C) 1.323387 523.765496
14 16 (C)	(C) 1.458000 391.674090
18 19 (C)	(C) 1.514000 349.799987
18 20 (C)	(C) 1.514000 349.799987
19 21 (C)	(C) 1.514000 349.799987
20 22 (C)	(C) 1.514000 349.799987
2 25 (C)	(H) 1.112599 328.226230
2 26 (C)	(H) 1.112599 328.226230
3 27 (C)	(H) 1.112599 328.226230
3 28 (C)	(H) 1.112599 328.226230
4 29 (C)	(H) 1.112599 328.226230
4 30 (C)	(H) 1.112599 328.226230
5 31 (C)	(H) 1.112599 328.226230
5 32 (C)	(H) 1.112599 328.226230
8 33 (C)	(H) 1.112599 328.226230
8 34 (C)	(H) 1.112599 328.226230
9 35 (C)	(H) 1.112599 328.226230
9 36 (C)	(H) 1.112599 328.226230
13 37 (C)	(H) 1.084582 354.325486
14 38 (C)	(H) 1.084582 354.325486
15 39 (C)	(H) 1.084582 354.325486
16 40 (C)	(H) 1.084582 354.325486
18 41 (C)	(H) 1.112599 328.226230
19 42 (C)	(H) 1.112599 328.226230

19 43 (C)	(H) 1.112599 328.226230
20 44 (C)	(H) 1.112599 328.226230
20 45 (C)	(H) 1.112599 328.226230
21 46 (C)	(H) 1.112599 328.226230
21 47 (C)	(H) 1.112599 328.226230
21 48 (C)	(H) 1.112599 328.226230
22 49 (C)	(H) 1.112599 328.226230
22 50 (C)	(H) 1.112599 328.226230
22 51 (C)	(H) 1.112599 328.226230

Because unsophisticated chemistry was chosen at the outset of the project, the initial hits could be optimized quickly, and the preparation of larger amounts of selected compounds could be accomplished easily. In depth evaluation of the biological properties of these amides is in progress.

Finally all geometric variables were completely optimized for each compound and the lowest energy confirmations were used in molecular modeling studies

REFERENCES

- 1. Yoneyama H, Shimoda A and Araki L. Efficient approaches to S-alkyl-N-alkylisothioureas: syntheses of histamine H3 antagonist clobenpropit and its analogues. *J. Org. Chem.*, 2008; 73: 2096–104.
- Fox GB, Esbenshade TA, Pan JB, Radek RJ, Krueger KM, Yao BB, Browman KE, Buckley MJ, Ballard ME, Komater VA, Miner H, Zhang M, Faghih R, Rueter LE, Bitner RS, Drescher KU, Wetter J, Marsh K, Lemaire M, Porsolt RD, Bennani YL, Sullivan JP, Cowart MD, Decker MW and Hancock AA. Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H₃ receptor antagonist. J. Pharmacol. Exp. Ther., 2005; 313: 176-190.

- LLigneau X, Lin J, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W and Schwartz J. Neurochemical and behavioral effects of ciproxifan, a potent histamine H₃-receptor antagonist. *J. Pharmacol. Exp. Ther.*, 1998; 287(2): 658–666.
- Esbenshade TA, Fox GB, Krueger KM, Baranowski JL, Miller TR, Kang CH, Denny LI, Witte DG, Yao BB, Pan JB, Faghih R, Bennani YL, Williams M and Hancock AA. Pharmacological and behavioral properties of A-349821, a selective and potent human histamine H₃ receptor ant agonist. *Biochem. Pharmacol.*, 2004; 68: 933–945.
- Passani MB, Giannoni P, Bucherelli C, Baldi E and Blandina P. Histamine in the brain: beyond sleep and memory. *Biochem. Pharmacol.*, 2007; 73: 1113–1122.
- Passani MB, Lin JS, Hancock A, Crochet S and Blandina P. The histamine H₃ receptor as a novel therapeutic target for cognitive and sleep disorders. *Trends Pharmacol. Sci.*, 2004; 25:618–625.
- Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M and Lin JS. The brain H₃-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. *Biochem. Pharmacol.*, 2007; 73: 1157–1171.
- Le S, Gruner JA, Mathiasen JR, Marino MJ and Schaffhauser H. Correlation between *ex vivo* receptor occupancy and wake-promoting activity of selective H₃ receptor antagonists". *J. Pharmacol. Exp. Ther.*, 2007; 325: 902–909.
- Witkin JM and Nelson DL. Selective histamine H₃ receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. *Pharmacol. Ther.*, 2007; 103: 1–20.
- Pillot C, Ortiz J, Héron A, Ridray S, Schwartz JC and Arrang JM. Ciproxifan, a histamine H₃-receptor antagonist/inverse agonist, potentiates neurochemical and behavioral effects of haloperidol in the rat". *J. Neurosci.*, 2004; 22: 7272–7280.
- Csizmadia IG and Enriz RD. Peptide and Protein folding. J. Mol. Stnuct., 2004; 543: 319-361.
- 12. Martin YC. Perspective in drug discovery and design. Springer Publisher, USA, Vol. 12, pp 3-23.
- Cruciani G, Clementi S and Pastor M. GLOPE-guided region selection. *Persp. Drug Disc. Design*, 2001; 14: 71-86.
- 14. Dunn Ill and Hopfinger AJ. Drug Discovery, Kluwer Academic Publishers, 1998; Chapter 12, pp 167-182.
- 15. Alvarez EO. The role of histamine on cognition. *Behav. Brain Res.*, 2009; 199: 183-189.
- Ligneau X, Lin J, Vanni-Mercier G, Jouvet M, Muir JL, Ganellin CR, Stark H, Elz S, Schunack W and Schwartz

J. Neurochemical and behavioral effects of ciproxifan, a potent histamine H₃-receptor antagonist. *J. Pharmacol. Exp. Ther.*, 1998; 287: 658-666.

- Dewar MJS, Zoobisch EG, Healy EF and Stewart JJP. AMI: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985; 107: 3902-3910.
- Simon J, Jorjensen P, Taylor H and Ozment J. Walking on potential energy surfaces. J. Phys. Chem., 1983; 87: 2745-2753.
- Benjamin ML, Jenny VL, Brian WC, Shujiang Y, Xiaoyi Z, Cheslan KS, Lin XC and Michael DH. Ground-State and Excited-State Structures of Tungsten–Benzylidyne Complexes. *Inorg. Chem.*, 2012; DOI: 10.1021/ic202622s.
- Vande WH, Carter RE, Grassy G, Kubinyi H, Martin YC, Tute MS and Willet P. Glossary of Terms used In: Computer Drug Design, 1997; Academic Press, San Diego.
- Schlicker E, Fink K, Hinterthaner M and Göthert M. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H₃-receptors. *Naunyn-Schmideberg's Arch. Pharmacol.*, 1989; 340: 633–638.
- Schlicker E, Malinowska M, Kathmann M and Göthert M. Modulation of neurotransmitter release via histamine H₃heteroreceptors. *Fundam. Clin. Pharmacol.*, 1994; 8: 128– 137.
- Schlicker EB, and Göthert M. Histamine H₃-receptormediated inhibition of serotonin release in the rat brain cortex. *Naunyn-Schmideberg's Arch. Pharmacol.*, 1988; 337: 588–590.
- Simon J, Jorjensen P, Taylor H and Ozment J. Walking on potential energy surfaces. J. Phys. Chem., 1983; 87: 2745-2753.
- Witkin JM and Nelson DL. Selective histamine H₃ receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. *Phamacol. Ther.*, 1994; 103: 1–20.
- Yoneyama H, Shimoda A and Araki L. Efficient approaches to S-alkyl-N-alkylisothioureas: syntheses of histamine H3 antagonist clobenpropit and its analogues. J. Org. Chem., 2008; 73: 6.
- Zhang M. Lack of cataleptogenic potentiation with nonimidazole H₃ receptor antagonist reveals potential drug-drug interactions between imidazole-based H₃ receptor antagonists and antipsychotics drugs. *Brain Res.*, 2005; 1045: 142–149.