Comparative studies of cimetidine derivative "temalastine" for potential energy calculation by Kitaigorodskii and Lennard-Jones functions

Khalida Bano*, Najaf Abbas Ghafoor and Naheed Akhtar

Department of Biochemistry, Biophysics Research Unit, University of Karachi, Karachi, Pakistan

Abstract: The non-bonded potential energies were computed for 2-[4-(5-Bromo-3-methyl-2-pyridyl) butylamino]-5-(6- methyl -3 - pyridyl - methyl) - 4 - pyrimidone, trihydrobromide , (Temalastine), which is the H₁ receptor antagonist and sedative psychoactive in nature. In the present calculation all the possible pairs of non-bonded interaction have been included for the energy calculation. The present work describes the conformational analysis of temalastine by using kitaigorodsky and lennard jones functions. The minimum potential energy was found to be -0.0089 k.cal/mol at $\omega 1 = 120^{\circ}$ and $\omega 2 = 260^{\circ}$ by katiagorodskii function and -0.0067 k.cal/mol at $\omega 1 = 120^{\circ}$ and $\omega 2 = 260^{\circ}$ by leneared jones function . The comparison between results obtained from kitaigorodskii function and lennard jones function give suggestion that both function give same results.

Keywords: Kitaigorodskii function, Lennard Jones function, cimetidine, temalastine, H₁ and H₂ antagonists. **Received:** March 21, 2010 **Accepted:** September 10, 2010 ***Author for Correspondence:** khalidabano@hotmail.com

INTRODUCTION

Neuronal histamine has been implicated in a variety of brain functions including learning and memory¹. Central histaminergic neurons are located exclusively in the tuberomammillary nucleus of posterior hypothalamus, from where they project diffusely to all regions of brain². Although histamine receptors distribution in the brain has been shown to considerably differ among species, high density of both postsynaptically located histamine H₁ and H₂ receptors has been found in the cortex, hypothalamus and other limbic regions including hippocampus and amygdale³, these brain regions are closely involved in cognition and emotion⁴. Cimetidine, a H₂ receptor antagonist, has been demonstrated to have anticancer effects on colorectal cancer, melanoma and renal cell carcinoma⁵ also capable of reducing gastric acid secretion with usual therapeutic dose⁶. Since the identification of the H_2 receptor⁷ a variety of compound have been shown to be specific H_2 receptor antagonists. Of these compounds significant number, cimetidine⁸, ranitidine, tiotidine, famotidine and oximetidine ⁹ have the general form of a heterocyclic 'head' linked by a four-atom chain, often methylthioethyl, to a dipolar 'tail'. These compounds are both potent and highly selective in their action. Certain closely related compounds in which the heterocyclic 'head' pyridine, the dipolar group is an isocytosine, as in oximetidine, and the four atom chain butyl, are active as both H_1 and H_2 antagonists¹⁰.

Exploitation of QSAR (quantitative structure activity relationships) studies on these compounds has lead to the generation of a series of compounds which have the same general characteristics, but are specific and potent H_1 antagonists. Cimetidine is the H_2 receptor antagonists led to the development of

other derivatives, which is widely used an affective inhibitor of gastric acid secretion in the treatment of duodenal ulcer and related conditions ¹¹. It has been found that a predominance use of low energy conformation with distances between aromatic N atoms and those in the isocytosine or thiodiazole-1-oxide groups in the region 5.2 6.0 A^o tend to correlate with H₁ activity in agreement with work by other on established H₁ antagonists ¹². The crystal and molecular structure of 2-[4-(5-Bromo-3-methyl-2-pyridyl)butylamino]-5-(6-methyl-3-

pyridyl-methyl)-4-pyrimidone trihydrobromide, (temalastine) with strong structural resemblances to the cimetidine group of H₂ receptor antagonist, but exhibits selective H₁ receptor antagonist activity. This compound has molecular formula $C_{21}H_{27}BrN_5O^3.3Br$ and have triclinic structure with a = 6.314, b =11.192 and c =19.441 and bond angles are α =102.47, β =92.77 and γ =103.28, Mr=685.09, P1, V=1298.51 A3, Z=2, Dx =1.75 g cm ⁻³, μ = 61.6 cm⁻¹, F(000)=672, R=2.93 % for 3208 independent reflexions and behavior shown like H₁ antagonist activity¹². In this work semiempirical conformational energy calculation were performed for the temalastin by two different functions.

Methods of calculation

The three dimensional Quantitative structure activity relationships (3D QSAR) provides the valuable information about the nature of the receptor¹³⁻¹⁶. It helps to describe new drug candidates and improve in vitro potency¹⁷. The crystallographic parameters were utilized in determining the three dimensional structure of the molecule , in this conformation of temalastin is analyzed based on the triclinic coordinates reported¹².

The potential energy can be calculated from these two relationships

1: Kitaigorodskii function^{18,19} 2: Lennard Jones function²⁰

In order to determine the allowed conformation the contact distance between the atoms in the adjacent residues have to be examined using criteria for minimum value of vander Waals contact distance ²¹. The fractional coordinates by multiplying with unit cell dimensions.

a =6.314,b=11.192,c=19.441

Triclinic coordinates have been converted into rectangular coordinates using the following relationship.

 $\begin{array}{l} X=xi+yi .\cos \gamma +zi \cos \beta \\ Y=yi . \sin \gamma +zi(\cos \gamma -\cos \beta .\cos \gamma)/\sin \gamma \\ Z=zi[1-\cos^2 \alpha -\cos^2 \beta -\cos^2 \gamma)+2\cos \alpha .\cos \beta .\cos \gamma)]^{1/2} \\ /\sin \gamma \end{array}$

Where as $\gamma = 102.47$, $\beta = 92.77$, $\gamma = 103.28$ The bond length and bond angles have also been calculated using the following relationship.

Bond length = L = exp $(x_2-x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$

Bond angle = Q = $\cos -1 (-L3)2 - (L1)^2 - (L2)^2 / 2 \times L1 \times L2$

If x, y, z and X[,],Y[,]Z[,] are the coordinates of atoms in triclinic system before and after the rotation through ω_1, ω_2 and ω_3 so the relationship use to evaluate these coordinates are as

$$\begin{split} X^{`} &= (a^{2}+b^{2}-c^{2}-d^{2}) \ x + 2(bc-ad) \ y + 2(bd+ac) \ z \\ Y^{`} &= z \ (bc+ad) \ x + (a^{2}-b^{2}+c^{2}-d^{2}) \ y + 2(cd-ab) \ z \\ Z^{`} &= z(bd-ac) \ x + 2(cd+ab) \ y + (a^{2}-b^{2}-c^{2}+d^{2})z \\ \end{split}$$
 Where,

$$a = \cos (\omega/2)$$

$$b = L x \sin (\omega/2)$$

$$c = M x \sin (\omega/2)$$

$$d = N x \sin (\omega/2)$$

" ω " being the angle of rotation. L, M, N are the direction cosines of the axis of rotation with respect to chosen system of coordinates and determined by given relationship.

Kitaigorodskii function used to calculate the potential energy "V" after parameter variations $(\omega_1, \omega_2)^{21}$.

 $V = 3.5 (8600 e^{-13 z} -0.04 / z^{6})$

Where as $z = Rij / R^{\circ}$

 R° = Equibrium distance between non bonded atoms.

The potential energy is also calculated by the lennard jones function.

$$\mathbf{V} = \mathbf{A} / \mathbf{R}^6 - \mathbf{B} / \mathbf{R}^{12}$$

Value of R° , A and B are given in article ²².

The atom O_{17} , C_{19} , C_{16} and N_{20} at which the two residues $[C_{21} - C_{18} - O_{17}, C_{19}$, C_{16} , $N_{20}]$ and $[C_{21} - C_{22}$ - C_{28} , C_{23} , C_{27} , $N_{24}]$ linked together is taken to be the origin of coordinates of a system. The coordinates of atom C_{21} are rotated at intervals of 20° angle of $\omega 1$ and the coordinates of atoms C_{28} , C_{23} , C_{27} and N_{24} are rotated at intervals of 20° Angle for ω_2 .

We calculated potential energy by both functions. No interaction was found for some pairs and some shows interaction. We calculated the total potential energies of active pairs, for all purpose we use several computer programs which were written in Basic language and IBM compatible computer was used throughout this work, here we used bond angle , bond length , potential energy calculation and total potential energy calculation programs^{23,24}, and for graphics we used Statistica (SSPS) software.

Following pairs were selected for potential energy calculations:

 $\begin{array}{l} C_{28}-O_{17},\ C_{23}-O_{17},\ C_{27}-O_{17},\ N_{24}-O_{17},\ C_{23}-\\ C_{19},\ C_{28}-C_{19},\ C_{27}-C_{19},\ N_{24}-C_{19},\ C_{28}-C_{16},\ C_{23}\\ -\ C_{16},\ C_{27}-C_{16},\ N_{24}-C_{16},\ C_{23}-N_{20},\ C_{27}-N_{20},\\ C_{20}-N_{20},\ N_{24}-N_{20}\,. \end{array}$

In the present work potential energy of nonbonded interactions for temalastin is calculated by two different functions. Total potential energies were calculated by summation of all individual pairs. Contours are plotted for visual understanding.

RESULTS

The prospective view of temalastin is shown in figure 1. Calculated value of bond angle and bond length shown in table 1 and 2 respectively. The results indicate serious type of interaction for the following pairs:

Results for these pairs indicate little interaction.

$$C_{27} - C_{19}, N_{24} - C_{19}, C_{27} - C_{16}, N_{24} - C_{16}, C_{23} - N_{20}, C_{27} - N_{20}, C_{26} - N_{20}, N_{24} - N_{20}$$

Table 1: Bond length of fractional co-ordinates.

No	Pairs	Bond length
1	N1C2	1.343119
2	N1C8	1.354302
3	C2C3	1.374234
4	C3C5	1.370825
5	С5С6	1.391214
6	C6C7	1.50633
7	C6C8	1.393787
8	С8С9	1.493925
9	C9C10	1.516434
10	C10C11	1.519984
11	C11C12	1.496912
12	C12N13	1.473045
13	N13C14	1.312016
14	C14N15	1.349114
15	C14N20	1.38115
16	N15C16	1.386858
17	C16017	1.225323
18	C16C18	1.447999
19	C18C19	1.350921
20	C18C21	1.501098
21	C19N20	1.371728
22	C21C22	1.509971
23	C22C23	1.385326
24	C22C28	1.380211
25	C23N24	1.3333322
26	N24C25	1.343581
27	C25C26	1.488217
28	C25C27	1.385933
29	C27C28	1.38109

Figure 1: 010 projection of Temalastin.

The results give detail information about the conformation of temalastine can exist in at least two stable conformations. The stable conformation are the maximum at $\omega 1 = 260^{\circ}$, $\omega 2 = 60^{\circ}$ and the minimum at $\omega 1 = 120^{\circ}$, $\omega 2 = 260^{\circ}$ by both functions ($\omega 1$ and $\omega 2$ are the angle of rotation about the bonds C_{21} - C_{18} , C_{21} - C_{22} respectively). The minimum potential energy was found to be -0.0089 k.cal/mol at $\omega 1 = 120^{\circ}$ and $\omega 2 = 260^{\circ}$ by katiagorodskii function and -0.0081 k.cal/mol at $\omega 1 = 120^{\circ}$ and $\omega 2 = 260^{\circ}$ by leneared jones function. The potential energy contour for temalastin by both functions is shown in figures 2 and 3.

Figure 2: Total potential energy contour graph by Kitaigorodskii function.

+ =The maximum potential energy is found to be 2223.77 k.cal/mol at $\omega 1=260^{\circ}$, $\omega 2=60^{\circ}$.

x=The minimum potential energy is found to be -.0089k.cal/mol at $\omega1{=}120^{\circ}\,\text{,}$

 $\omega 2 = 260^{\circ}$.

Figure 3: Total potential energy contour graph by Lennard Jones function.

+ = The maximum potential energy is found to be 1672. 02 k.cal/mol at $\omega 1=260^{\circ}, \omega 2=60^{\circ}$.

x =The minimum potential energy is found to be -. 0067k.cal/mol at $\omega 1=120^{\circ}, \omega 2=260^{\circ}$.

Figure 4: Allowed zone 315° to 355° by Kitaigorodskii results.

 Table 2: Bond angles of co-ordinates.

Table	2. Donu angles of co-orunnates.	
No	Pairs	Bond angles
1	C2N1C8	125.0263
2	N1C2C3	117.2309
3	C2C3C5	120.547
4	C3C5C6	121.2098
5	C5C6C7	121.1544
6	C5C6C8	117.7702
7	C7C6C8	121.1105
8	N1C6	118.3606
9	N1C8C9	117.1848
10	C6C8C9	124.5179
11	C8C10	110.8601
12	C9C10C11	111.1761
13	C10C11C12	114.553
14	C11C12N13	109.9165
15	C12N13C14	125.0276
16	N13C14N15	118.3723
17	N13C14N20	123.1131
18	N15C14N20	118.5438
19	C14N15C16	124.6285
20	N15C16O17	118.9762
21	N15C16C18	115.0337
22	O17C16C18	126.0426
23	C16C18C19	118.6337
24	C16C18C21	118.9258
25	C19C18C21	122.3762
26	C18C19N20	122.0367
27	C14N20C19	121.0851
28	C18C21C22	112.7268
29	C21C22C23	120.5148
30	C21C22C28	123.2774
31	C23C22C28	116.2633
32	C22C23N24	121.1873
33	C23N24C25	124.4439
34	N24C25C26	118.797
35	N24C25C27	115.9613
36	C26C25C27	125.3081
37	C25C27C28	121.1321
38	C22C28C27	121.1569

This molecule has very fix allowed region this shows that its flexibility is very fix and very low, the allowed region for the molecule shown in figures 4 and 5 by Kitaigorodskii and Lennard Jones respectively.

Figure 5: Allowed zone 320 to 345° by Lennard Jones results.

CONCLUSION

The comparison between results obtained from Kitaigorodskii function¹⁸ and Lennard Jones¹⁹ interaction give suggestion that both function give same results and difference between both allowed zone is very rear which is negligible.

REFERENCES

- 1. Haas HL and Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nature reviews, *Neuroscience*, 2003; 4: 121–130.
- Tatsuya F, Hidenori S, Yutaka N, Nobuyuki T, Naoki U, Mayumi S, Yasushi S. Cimetidine inhibits epidermal growth factor-induced cell signaling. J. Gastroenterol. Hepatol., 2007; 22: 436–443.
- Ryu JH, Yanai K, Sakurai E, Kim CY and Watanabe T. Ontogenetic development of histamine receptor subtypes in rat brain demonstrated by quantitative autoradiography, *Dev. Brain Res.*, 1995; 87: 101–110.
- Hongmei D, Kenya K, Hiroshi K, Satoshi F, Yuhong J, Ajing X, Eiko S, Motohisa K, Nobuyuki O, Atsuo K and Kazuhiko Y. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. J. Neures., (online) 2006; www.sciencedirect.com.
- Toshimasa I, Yasuko I, Mitsunobu D and Masatoshi I. Structural Study of Histamine H2 Receptor Antagonists. Five 3-[2-(Diaminomethyleneamino)-4-thiazolymethylthio] pro- pionamidine and –amide Derivatives. Acta Cryst., 1989; B: 505–512.5
- Jan M, Shaukat AO, Shafique TMJ, Shafiq A, Muhammad H and Muhammad Q. Comparison for their effects on volume and acidity of carbachol induced gastric secretion in fasting rabbits. J. Ayub. Med. Coll., 2005;17: 33- 41.

- Black JW, Duncan WMA, Durant GJ, Ganellin CR and Parson ME. Definition and antagonism of histamine H2 receptor. *Nature*, 1972; 236: 385-390.
- Brimblecombe Rw, Ducan WAM, Durant GJ, Emmett C, Ganellin CR and Parsons ME. Cimetidine, A non-Thiourea H2 receptor antagonist. *J. Int. Med. Res.*, 1975; 3: 86-92.
- Grazyna K, Jan CD and Aleksander PM. Conformation and Tautamerism of the Cimetidine molecule: a theoretical study. J. Mol. Struc., 2003; 645: 37-43.
- Toshimasa I, Yasuko I, Mitsunobu D and Masatoshi I. Structural Study of Histamine H2 Receptor Antagonists. Five 3-[2-(Diaminomethyleneamino)-4-thiazolymethylthio] pro- pionamidine and –amide Derivatives. Acta. Cryst., 1989; B: 505–512.5
- Onoa GB, Moreno V, Freisinger E and Lippert B. Pd(II)and Pt(II)- cimetidine) 2] C₁₂. 12H₂O . J. Inorg. Biochem. 2002; 89: 237-247.
- Bannister C, Burns K and Waykin DJ. Structures of Histamine H1- Receptor Antaginists derived from the Cimetidine group of Histamine H2 Receptor Antagonists. *Acta Cryst.*, 1994; B50: 221-243.
- Asim K. Quantitative Structure activity (QSAR) paradigmhansch era to new millinium. *Mini Rev. Med. Chem.*, 2001:187-195.
- Benjamin J, Dunna EJ and Hoffer AJ. Construction of molecular shapes analysis "three dimensional quantitative structure analysis relationships for an analog series of pyridobenzo diazepinone. J. Med. Chem., 1994; 37: 3775-3788.
- El Kadi AO and Sharif SI. The role of histaminergicnoradrenergic axis in naloxone-induced withdrawal symptoms in mice. *Pharmacol. Biochem. Behav.*, 1996; 55: 49-54.

- Greendige PA. A Comparison of methods for Pharmacophore generation with the catalyst software and their use for 3D QSAR. *Mini Rev. Med. Chem.*, 2001; 79-87.
- 17. Manuel AN. Use of Structral information in drug designing. *Curr. Opin. Struc. Biol.*, 1992; 201-202.
- Kitaigorodskii AI. The interaction curve of non bonded carbon and hydrogen atoms and its application. *Tetrahedron*, 196; 14: 230-236.
- 19. Kitaigorodskii AI. The Principle of close packing and the condition of thermodynamic stability of organic crystals. *Acta. Cryst.*, 1965; 18: 585-590.
- Scott RA and Scheraga HA. Conformational Analysis of Macromolecules II. The Rotational Isomeric States of Normal Hydrocarbons. J. Chem. Phys. 1966; 44: 3054-3060.
- Khalida B, Naheed A, Najaf AG, Haleem MA. Conformational analysis of Histamine H1- Receptor Antagonist "Temalastine" as a cimetidine derivative. *Int. J. Biol. Biotech.*, 2008; 5: 93-100.
- 22. Pizzi A and Eaton N .The structure of cellulose by conformational analysis 1. cellobios and Methyl cellobioside. *Macro. Mol. Scl. Chem.*, 1984; A21: (11 and 12).
- 23. Haleem MA and Saify ZS. Potential Energy Calculation of Treptilaninum. *Pak. J. Sci. Ind. Res.*, 1989; 32: 74-76.
- Naheed A, Farhat B, Sadaf N and Haleem MA. Computer Aided Conformational Analysis of Sulfonated azo dyes diammonium Orange G(C16H10N2 O7S2 (NH4). 4H2O. *Pak. J. Pharma. Sci.*, 2004; 18: 66-70.